49 research outputs found

    An efficient hybrid method for 3D to 2D medical image registration

    Get PDF
    PURPOSE: The purpose of this paper is to present a method for registration of 3D computed tomography to 2D single-plane fluoroscopy knee images to provide 3D motion information for knee joints. This 3D kinematic information has unique utility for examining joint kinematics in conditions such as ligament injury, osteoarthritis and after joint replacement. METHODS: We proposed a non-invasive rigid body image registration method which is based on two different multimodal similarity measures. This hybrid registration method helps to achieve a trade-off among different challenges including, time complexity and accuracy. RESULTS: We performed a number of experiments to evaluate the performance of the proposed method. The experimental results show that the proposed method is as accurate as one of the most recent registration methods while it is several times faster than that method. CONCLUSION: The proposed method is a non-invasive, fast and accurate registration method, which can provide 3D information for knee joint kinematic measurements. This information can be very helpful in improving the accuracy of diagnosis and providing targeted treatment

    Effects of neuromuscular gait modification strategies on indicators of knee joint load in people with medial knee osteoarthritis:A systematic review and meta-analysis

    Get PDF
    OBJECTIVES: This systematic review aimed to determine the effects of neuromuscular gait modification strategies on indicators of medial knee joint load in people with medial knee osteoarthritis. METHODS: Databases (Embase, MEDLINE, Cochrane Central, CINAHL and PubMed) were searched for studies of gait interventions aimed at reducing medial knee joint load indicators for adults with medial knee osteoarthritis. Studies evaluating gait aids or orthoses were excluded. Hedges’ g effect sizes (ES) before and after gait retraining were estimated for inclusion in quality-adjusted meta-analysis models. Certainty of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS: Seventeen studies (k = 17; n = 362) included two randomised placebo-controlled trials (RCT), four randomised cross-over trials, two case studies and nine cohort studies. The studies consisted of gait strategies of ipsilateral trunk lean (k = 4, n = 73), toe-out (k = 6, n = 104), toe-in (k = 5, n = 89), medial knee thrust (k = 3, n = 61), medial weight transfer at the foot (k = 1, n = 10), wider steps (k = 1, n = 15) and external knee adduction moment (KAM) biofeedback (k = 3, n = 84). Meta-analyses found that ipsilateral trunk lean reduced early stance peak KAM (KAM1, ES and 95%CI: -0.67, -1.01 to -0.33) with a dose-response effect and reduced KAM impulse (-0.37, -0.70 to -0.04) immediately after single-session training. Toe-out had no effect on KAM1 but reduced late stance peak KAM (KAM2; -0.42, -0.73 to -0.11) immediately post-training for single-session, 10 or 16-week interventions. Toe-in reduced KAM1 (-0.51, -0.81 to -0.20) and increased KAM2 (0.44, 0.04 to 0.85) immediately post-training for single-session to 6-week interventions. Visual, verbal and haptic feedback was used to train gait strategies. Certainty of evidence was very-low to low according to the GRADE approach. CONCLUSION: Very-low to low certainty of evidence suggests that there is a potential that ipsilateral trunk lean, toe-out, and toe-in to be clinically helpful to reduce indicators of medial knee joint load. There is yet little evidence for interventions over several weeks

    Vertical stiffness is not related to anterior cruciate ligament elongation in professional rugby union players

    Get PDF
    Background: Novel research surrounding anterior cruciate ligament (ACL) injury is necessary because ACL injury rates have remained unchanged for several decades. An area of ACL risk mitigation which has not been well researched relates to vertical stiffness. The relationship between increased vertical stiffness and increased ground reaction force suggests that vertical stiffness may be related to ACL injury risk. However, given that increased dynamic knee joint stability has been shown to be associated with vertical stiffness, it is possible that modification of vertical stiffness could help to protect against injury. We aimed to determine whether vertical stiffness is related to measures known to load, or which represent loading of, the ACL. 
 Methods: This was a cross-sectional observational study of 11 professional Australian rugby players. Knee kinematics and ACL elongation were measured from a 4-dimensional model of a hopping task which simulated the change of direction manoeuvre typically observed when non-contact ACL injury occurs. The model was generated from a CT scan of the participant's knee registered frame by frame to fluoroscopy images of the hopping task. Vertical stiffness was calculated from force plate data. 
 Results: There was no association found between vertical stiffness and anterior tibial translation (ATT) or ACL elongation (r=−0.05; p=0.89, and r=−0.07; p=0.83, respectively). ATT was related to ACL elongation (r=0.93; p=0.0001).
 Conclusions: Vertical stiffness was not associated with ACL loading in this cohort of elite rugby players but a novel method for measuring ACL elongation in vivo was found to have good construct validity

    Bicruciate-stabilised total knee replacements produce more normal sagittal plane kinematics than posterior-stabilised designs

    No full text
    Bicruciate-stabilised total knee replacement (TKR) aims to restore normal kinematics by replicating the function of both cruciate ligaments. We performed a prospective, randomised controlled trial in which bicruciate- and posterior-stabilised TKRs were implanted in 13 and 15 osteo-arthritic knees, respectively. The mean age of the bicruciate-stabilised group was 63.9 years (sd 10.00) and that of the posterior-stabilised group 63.2 years (sd 6.7). A control group comprised 14 normal subjects with a mean age of 67.9 years (sd 7.9). The patellar tendon angle (PTA) was measured one week pre-operatively and at seven weeks post-operatively during knee extension, flexion and step-up exercise
    corecore